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Abstract. The rapid development of information and communication 

technologies (ICTs) has provided rich resources for spatio-temporal data mining 

and knowledge discovery in modern societies. Previous research has focused on 

understanding aggregated urban mobility patterns based on mobile phone 

datasets, such as extracting activity hotspots and clusters. In this paper, we aim 

to go one step further from identifying aggregated mobility patterns. Using 

hourly time series we extract and represent the dynamic mobility patterns in 

different urban areas. A Dynamic Time Warping (DTW) algorithm is applied to 

measure the similarity between these time series, which also provides input for 

classifying different urban areas based on their mobility patterns. In addition, 

we investigate the outlier urban areas identified through abnormal mobility 

patterns. The results can be utilized by researchers and policy makers to 

understand the dynamic nature of different urban areas, as well as updating 

environmental and transportation policies. 

Keywords: Mobile phone datasets, Urban mobility patterns, Dynamic Time 

Warping, Time series 

1 Introduction 

Identifying urban mobility patterns has been a continuing research topic in GIScience, 

transportation planning, and behavior modeling. Since the time-dimension is 

considered an important factor for most social activities, understanding the dynamics 

of the daily mobility patterns is essential for the management and planning of urban 

facilities and services [1, 2]. However, most of the previous research in this field is 

based on data acquired from travel diaries and questionnaires, which is a widely 

adopted data collection method when studying individual travel behavior [3]. Due to 

the limited number of people covered by travel diaries, these datasets fail to provide 

comprehensive evidence when studying the characteristics of the whole urban system, 

such as identifying clusters of urban mobility.  

Meanwhile, the development of information and communication technologies 

(ICTs) has created a wide range of new spatio-temporal data sources (e.g., 

georeferenced mobile phone records), leading to research that focuses on 
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characterizing urban mobility patterns from mobile phone datasets (e.g., the real-time 

Rome project
 
at the MIT SENSEable City Lab

1
). Undoubtedly, mobile phone datasets 

opened the way to a new paradigm in urban planning, i.e., Real-time cities [4], as well 

as facilitating studies on behavior analysis and spatio-temporal data mining [5]. 

Researchers believe that urban structure has a strong impact on urban-scale mobility 

patterns, indicating that different areas inside a city are associated with different 

inhabitants’ motion patterns [6, 7]; therefore, previous research has focused on 

extracting aggregated patterns in different urban areas from mobile phone data, such 

as hotspots, clusters, and points of interest (POIs) [8]. However, there has not been 

sufficient research on characterizing and classifying mobility patterns in different 

urban areas from a dynamic perspective, i.e., analyzing these patterns with respect to 

time. Although the extraction of aggregated patterns (i.e., hotspots and clusters) offers 

valuable input for maintaining the sustainability of urban mobility, it fails to provide 

sufficient information for understanding the “rhythm” of an urban system. The 

objective of this research is to go a step beyond the aggregation of individual 

mobility. We analyze the hourly patterns (time series) of mobility aggregation in 

different urban areas and demonstrate their differences. For instance, time series 

associated with a central business district (CBD) would be different from suburban 

areas. Exploring these patterns will be helpful for policy makers in understanding the 

dynamic nature of different urban areas, as well as updating environmental and 

transportation policies. Moreover, the methodology can also be applied to identify 

abnormal mobility patterns in some special districts, for example, a high crime rate 

area.  

The analysis in this research is based on a mobile phone dataset from northeast 

China. We will measure the similarity of different urban areas based on a Dynamic 

Time Warping algorithm (DTW): this is a well-developed algorithm in the field of 

speech recognition and signal processing for matching two time series, but it has 

rarely been used for urban mobility modeling [9]. Next, we will classify the time 

series based on hierarchical clustering, which allows for the detection of outlier urban 

patterns. The results can also be used as a reference for residents’ activities, including 

long-term choices such as where to live, and short-term choices such as daily activity 

scheduling. 

The remainder of this paper is organized as follows: Section 2 describes related 

work in the areas of mobility modeling, mobile phone data analysis, and Dynamic 

Time Warping. Section 3 introduces the basic research design, including the 

description of the dataset and the methodology. Section 4 presents the data analysis, 

and we conclude this research in Section 5. 
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2 Related Work 

2.1 Mobility modeling and mobile phone data 

Modeling human mobility patterns has become an important research question in 

various fields such as Geographic Information Science, Transportation, and Physics. 

Much progress has been made regarding the theories, methodologies, and 

applications. Larsen [10] identified five types of mobility: 1) Physical travel of people 

(e.g., work, leisure, family life); 2) Physical travel of objects (e.g., products to 

customers); 3) Imagination travel (e.g., memories, books, movies); 4) Visual travel 

(e.g., internet surfing on Google Earth); and 5) Communication travel (e.g., person-to-

person messages via telephones, letters, emails, etc.). In this research, when referring 

to “human mobility” we mainly focus on characterizing the 1
st
 category of human 

mobility (Physical travel of people).  

Due to the widespread usage of mobile phones, several studies have been 

conducted with a focus on extracting the characteristics of human mobility from 

georeferenced mobile phone data [11]. Since individuals are atoms in an urban 

system, the spatio-temporal characteristics of an urban system could be viewed as a 

generalization of individual behavior; therefore, mobile phone data also provide new 

insights in analyzing the aggregated mobility patterns of phone users in urban 

systems. Researchers have identified two major perspectives when exploring human 

mobility patterns from mobile phone data [12]: 

(a) Individual perspective: This category of research mainly focuses on 

identifying individual trajectory patterns, which is related to the theme of 

pattern recognition in Physics and Computer Science. For example, Gonzalez et 

al. [13] studied the individual trajectories of 100,000 mobile phone users based 

on tracked location data for over six months, providing new input to 

understanding the basic laws of human motion. Song et al. [14] examined the 

regularity of human trajectories based on mobile phone data, and their results 

indicate that human mobility is highly predictive. Some researchers have 

combined the location information with social attributes of the phone users, 

such as with the social positioning method (SPM) [15]. Since the usage of 

mobile phones can affect the mobility patterns of their users, previous studies 

have also focused on the interaction between ICTs and human activity-travel 

behavior [16, 17].   

(b) Urban perspective: Cities can be considered complex systems that are 

constituted by different processes and elements [2]. The rapid development of 

ICTs not only provides a rich data source for modeling urban systems, but also 

resulted in inevitable changes in the spatio-temporal characteristics of urban 

mobility. Researchers have focused on the following two aspects when 

studying the development in urban and regional planning based on mobile 

phone data:  

(i) Spatial division and morphology: For example, Kang et al. [18] 

investigated how patterns of human mobility inside cities are affected by 

two urban morphological characteristics, i.e., compactness and size. 



(ii) Spatial clustering and spread: The study of hotspot clustering patterns has 

been addressed in many studies. In the real-time Rome project conducted 

by the MIT SENSEable City Lab, researchers studied the congregation of 

tourists and the gathering of people during special events
2
. Another similar 

project is “Mobile Landscape Graz in Real Time”, which concentrates on 

the activity distribution of phone users in the city of Graz, Austria
3
.  

The analysis in this research is conducted from the urban perspective. As stated in 

Section 1, most previous research has concentrated on exploring aggregated patterns 

when analyzing urban mobility from mobile phone datasets. Here we focus on the 

temporal patterns of urban mobility. We use DTW to characterize and classify the 

mobility time series associated with different urban areas, which extends previous 

research on spatial clustering and mobility spread. The DTW algorithm has been 

identified as one of the most useful methods to measure the similarity between two 

time series, which minimizes the effects of shifting and distortion in time [19]. 

Section 2.2 provides the background of DTW and its applications.  

2.2 Dynamic Time Warping and its applications 

One important research question regarding time series data is finding whether two 

time series represent similar behavior [20]. Traditional distance measures, such as 

Euclidean distance, are not suitable for measuring the distance between time series 

data. For example, consider two time series A[1,1,1,1,2,10,1,1,1] and 

B[1,1,1,1,10,2,1,1,1]: the Euclidean distance between A and B is         . This is a fairly 

large number, which implies dissimilarity between the two given time series; 

however, the structures of the two series are actually very similar to each other. 

Therefore, researchers started to look for new algorithms to measure the similarity 

between two time series. Moreover, in the fields of Computer Science and 

Mathematics, researchers also used Discrete Fréchet Distance to measure the 

similarity between two curves [21]; however, this method is very sensitive to outliers 

and displacements [22], therefore it is not very appropriate for time series data. Here, 

Dynamic Time Warping (DTW) is proposed to find an optimal match between two 

given time-dependent sequences [23]. This algorithm has been well developed to 

measure the similarity between time series in various research areas, such as speech 

recognition, motion detection, or signal processing [24]. DTW has also been used for 

analyzing human trajectories and motion patterns, for example, Lee et al. [25] utilized 

DTW to classify the trajectories of moving objects. 

Fig.1 represents the process of calculating the DTW distance between two example 

time series. First a DTW grid is constructed. Inside each grid cell a distance measure 

is applied to compare the corresponding elements (here we use absolute differences) 

of the two time series. In order to find the best match between these two sequences, 

one needs to find a path through the grid which minimizes the total distance; this is 

considered the DTW distance between the two series.  

                                                           
2 http://senseable.mit.edu/realtimerome/ 
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The biggest advantage of DTW is that one can obtain a robust time alignment 

between reference and test patterns with a high tolerance of element displacement 

[26]. It can also match series with different lengths, which is very useful for some 

applications such as handwriting recognition. However, sometimes DTW tends to 

over-distort the series to create an unrealistic correspondence between elements; 

therefore, it is applicable to set local constraints and global constraints on the path. 

This prevents very short features matching with very long ones [19]. 

 

 

Fig. 1. DTW algorithm 

As mentioned in Section 1, although DTW has been applied to analyze individual 

trajectory patterns, only a few studies have utilized this method to explore urban-scale 

patterns, most of which concentrate on remote sensing data [27, 28]. Researchers have 

proposed several other methodologies to compare two time series, such as Longest 

Common Subsequence (LCSS), but DTW has a high performance for series in which 

the same classes are best characterized by their shapes rather than their values. In this 

research we focus on the internal structure of the mobility time series instead of their 

magnitude. Since DTW can be used to warp the time series, it allows us to group 

similar mobility patterns together, even though the corresponding elements in the two 

series are not exactly aligned with each other (see example in Section 3.2). More 

specifically, here we will use DTW to measure the similarity of hourly population 

density trends of different urban areas. The results of the similarity measure will serve 

as the basis for urban classification and outlier detection. In addition, we will discuss 

the issue of comparing the mobility pattern of a reference area, i.e., a benchmark, to 

other urban areas.  

3 Research Design 

3.1 Dataset 

The analysis is based on a dataset from city A
4
 (acquired from a major mobile phone 

operator in China), which is a commercial and transportation center in northeast 

China. The dataset covers approximately one million mobile phone users (20% of the 

                                                           
4 The name of the city is not shown as requested by the data provider. 



city population) and includes mobile phone connection records for a time span of 9 

days (4 weekend days and 5 weekdays). It includes the time, duration, and 

approximate location of mobile phone connections, as well as the age and gender 

attributes of the users. Table 1 provides a sample record. The phone number, 

longitude, and latitude are not shown for privacy reasons. For each user, the location 

of the nearest mobile phone base tower is recorded both when the user makes and 

receives a phone call, resulting in a positional data accuracy of about 300m-500m. 

Table 1. Sample record from the dataset  

Phone number Longitude Latitude  Time Duration 

1360******* 126.***** 45.***** 12:06:12 5mins 

3.2 Methodology 

As discussed in Section 2, we use DTW to measure the similarity of hourly mobility 

patterns between different urban areas. This algorithm allows us to group similar 

patterns together, as well as identifying outlier patterns. Due to the complexity of 

urban systems, it is highly possible that similar mobility patterns may have various 

forms in terms of their time dimensions. Fig. 2a shows two example series that are 

similar (series 2 is created from series 1 using the lag operator lag=1, the y axis of 

both figures are normalized to [0, 1] for simplicity). Both series have two peak time 

periods (one in the morning, the other in the afternoon). For comparison, Fig. 2b 

shows two series that are highly distinct from each other (series 3 is a flat series).  

 

   
   (a)                                                  (b) 

Fig. 2. Example series: (a) Two similar patterns; (b) Two distinct patterns 

The distances measured by DTW, Euclidean distance and the Discrete Fréchet 

Distance are presented in Table 2.  

Table 2. DTW, Euclidean and Discrete Fréchet distance for example series 

 
Dis1 

(Series 1 vs Series 2) 

Dis2 

(Series 1 vs Series 3) 

Distance Ratio 

(Dis2/Dis1) 

DTW 0.00208 0.31 149.04 

Euclidean 1.41 3.33 2.36 

Fréchet 0.70 0.90 1.28 



As can be seen, the distance ratio indicates that DTW shows a much better 

performance of distinguishing different time series than the other two methods; 

therefore, it is a more useful method for researchers to quantify the similarity of 

dynamic mobility patterns. 

In this research, the data analysis will be conducted in the following three steps: 

3.2.1 Summarize dynamic population from cell phone records 

To summarize the dynamic mobility patterns in different urban areas, we first need to 

divide the study area into sub-areas. One option is to divide the study area into grid 

cells [18]; however, it is difficult to decide on the appropriate cell size. Moreover, it is 

highly possible that the number of base towers in each cell varies, resulting in higher 

mobility in areas with higher tower density. Therefore, we decided to divide the study 

area into Voronoi polygons based on the spatial distribution of cell phone towers (Fig. 

2), and then to summarize the hourly phone call frequencies for each polygon. Each 

Voronoi polygon is associated with a time series to represent its hourly phone call 

frequency pattern. To further extract the number of people (i.e., active mobile phone 

users) in each cell, we eliminated the repeated phone calls made by the same user. 

Note that all the numbers here are on an average daily basis. To normalize the 

results, each population count is divided by the size of the given polygon. Since the 

analysis for large polygons has relatively low spatial accuracy resulting from the low 

density of base towers in the surrounding area, we only perform the analysis for 

polygons smaller than 10 km
2
. As indicated in Fig. 3, these polygons (highlighted) 

cover the majority of the downtown area. 

 

 

Fig. 3 Voronoi polygons smaller than 10km2 

Last, we calculate relative mobility patterns for each polygon. In relative time series, 

for each cell its values are divided by the maximum of the 24 hourly values. This 

standardizes the magnitude of data and also helps in further investigating the internal 

structure of each time series. Since the main focus of this research is not on the 

absolute value of each series, we use relative time series instead of the original ones 

to measure the similarity of mobility patterns between polygons. 

3.2.2 Calculate DTW distance matrix 
Based on the algorithm described in Section 2, we construct the DTW distance matrix 

for the relative time series associated with each of the selected Voronoi polygons. The 



output is a distance matrix D, in which Dij represents the DTW distance between cell 

polygon i and j. We use a global constraint “Sakoe-Chiba band”, which has a fixed 

windows width in both horizontal and vertical directions [23]. Here the window size 

is set to be 4, indicating that the maximum allowable absolute time deviation between 

two matched elements is 4 hours. This constraint helps to prevent unrealistic 

distortion in the time dimension, such as matching the evening hour patterns with 

morning patterns. 

3.2.3 Analyze urban mobility patterns based on DTW distance matrix 

Based on the DTW matrix, one can explore the dynamic patterns of urban areas from 

various perspectives, either addressing the “similarity” or “dissimilarity” of urban 

divisions. In this paper we will conduct two example analyses for both circumstances 

based on the distance matrix constructed in step 2. The first one focuses on mapping 

the mobility similarity to reference areas, whereas the second example concentrates 

on detecting outlier patterns. Note that to further clean up the data, polygons with 

zero-phone call frequencies are eliminated. The analysis is presented in detail in 

Section 4. 

4 Data Analysis 

4.1 Mapping the similarity to reference areas 

In urban studies, it is common for researchers to select one or more particular areas as 

case studies for data collection and analysis. Many of these studies are related to 

human mobility patterns, such as crime trends, traffic congestion, etc. Although there 

are usually many other control variables in the analysis, identifying the mobility 

similarity between a selected area (reference area) and other areas can provide 

references for further analysis.  

Fig. 4 represents the similarity measure of mobility patterns between a reference 

polygon (marked red, where a major commercial street is located) and other urban 

areas. Dark brown color indicates a more similar mobility pattern (shorter DTW 

distance), whereas the light yellow color indicates a less similar one. As can be seen 

from Fig. 4, the average DTW distance on weekdays (2.73e-2) appears to be slightly 

smaller compared to that on weekends (2.85e-2) based on a paired two sample t test 

(p<0.001), indicating that the mobility patterns on weekdays are closer to the pattern 

in the reference area. A potential reason is that most human social activities during 

weekends (i.e., grocery shopping, leisure activities) do not have such strict time 

constraints as the ones on weekdays (i.e., go to school / work), so it is highly possible 

that there are more irregular patterns during weekends (further confirmed in the 

outlier analysis in Section 4.2). In addition, it appears that the polygons surrounding 

the commercial street show a more similar pattern to the reference area on weekends 

than on weekdays (see the zoomed-in subfigures of Fig. 4a, b), indicating a potential 

mobility correlation among those areas during weekends. This also represents the 

opposite of the general trend of the whole study area, where mobility on weekdays is 



closer to the pattern in the reference area. This indicates that spatial scale plays an 

important role in this analysis. However, in order to generate further conclusions for 

other urban study questions (e.g., traffic congestion), we will need additional socio-

economic data to conduct additional correlation analyses. Fig. 4 is only a first step of 

measuring the similarity between different urban areas in terms of dynamic mobility 

patterns, and it provides an initial reference for socio-economic studies. 

 

             
(a)                                                 (b) 

Fig. 4. Mapping the DTW distance between reference area and other areas. (a) Weekdays; (b) 

Weekends 

One can also define the reference (benchmark) series manually. For example, we 

define the benchmark series as [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], 

representing an evenly distributed mobility pattern during both day and night hours. 

Fig. 5 shows the distribution of DTW distances between the benchmark series and the 

study areas. This method is very useful for interpreting the internal structure of 

dynamic mobility patterns for a particular cell polygon. In this case, polygons with a 

smaller DTW distance have more evenly distributed mobility patterns.  

 

 
(a)                                                         (b) 

Fig. 5. Mapping the DTW distance between a benchmark series and other series. (a) Weekdays  

(b) Weekends 

As can also be seen from the histogram (Fig. 6), in the first three groups (DTW 

distance < 0.2), there are more polygons on weekends than on weekdays, indicating 

that the mobility patterns on weekends are closer to an evenly distributed pattern. This 

is consistent with common sense that activities during weekends have less time 

constraints.  

   



 

Fig. 6. Histogram of DTW distance for weekdays and weekends 

Similarly, we can define other benchmark series. For example:  

[0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0] represents a pattern that expresses the 

fact that there is only one peak during the day. Note that the numbers in benchmark 

series can be any value between 0 and 1, and it is not necessary to use binary values. 

The principle here is similar to the studies utilizing DTW to detect a particular hand-

writing style or speech tone pattern. By matching pre-defined benchmark series with 

study areas, we can investigate various patterns that are of interest.  

4.2 Outlier detection  

As discussed in [29], outlier mining techniques can be used to investigate abnormal 

activities such as traffic accidents. From a broader perspective, since urban-scale 

mobility patterns are strongly affected by the urban structures, identifying abnormal 

mobility patterns can be helpful for researchers and policy makers to investigate the 

functioning patterns of different urban areas, as well as optimizing the distribution of 

urban services (e.g., Police patrol). Moreover, this technique can also be applied to 

detect potential incidents by comparing given patterns in a certain area to its regular 

pattern. Therefore, in the second analysis we explore outlier detection based on the 

DTW distance matrix discussed in Section 3. Our objective is to identify cell 

polygons with abnormal mobility patterns. Since hierarchical classification can 

operate directly on the distance matrix, we adopt this method to classify the mobility 

time series. The algorithm is defined in Fig.7. 

 

 

Fig. 7. Outlier detection algorithm 



There are several methods to set the number of clusters in hierarchical classification; 

however, this value is often affected by specific application scenarios. As an example 

analysis, here we adopt the criteria discussed in [30], where numCluster = max(2; 

sqrt(n/2)), n is the number of entries, and threshold t is defined as 3. 

In the classification, we detected 15 outliers for weekdays and 18 for weekends. 

All the other cells are aggregated into one class. To further investigate the structures 

of the outlier series, we first define what a typical “normal series” looks like. Fig. 8 

shows an average series for both weekdays and weekends after removing the outlier 

polygons. As can be seen, a normal series has two mobility peaks each day: one is 

around 9am; the other is around 6pm. The mobility density reaches the lowest point 

between 2-4am. This is consistent with common sense. On weekends the mobility 

density is slightly higher during night hours in this case, but there is no substantial 

difference between weekdays and weekends regarding the average patterns.  

 

 

Fig. 8. Average normal series 

Fig. 9 shows the results of the outlier detection. The detected outliers are marked red, 

other cell polygons are marked light blue. We can see that there are slight differences 

between weekdays and weekends.  

 

       
(a)                                                (b) 

Fig. 9. Outlier polygons. (a) Weekdays; (b) Weekends 

As a comparison, Fig. 10 shows two example outlier time series (zoomed-in polygons 

in Fig. 9). Referring back to the landmarks on Google Map
5
, the plot leads us to the 

following hypothesis to explain the abnormality of the areas: 

                                                           
5  http://maps.google.com; The map with landmarks is not shown as required by the data 

provider. 

http://maps.google.com/


In polygon 238 there are many night clubs and other leisure facilities for night 

hours. This may explain the abnormal high density rate after midnight. Since there is 

a big international trade center only open during weekdays, this possibly explains why 

the mobility during daytime is not consistent with regular work hours on weekends. 

In polygon 125 there are several community colleges and training schools. There 

are not many night clubs in this area. The mobility density continues to be high 

between 8am and 8pm on weekends, indicating a noticeable difference in mobility 

patterns between weekdays and weekends. 

 

                                                                                                      
(a)                                                          (b) 

Fig. 10. Outlier patterns. (a) Polygon 238; (b) Polygon 125 

Additional information is needed to test the above hypothesis, which is not the 

focus of this research. Generally, the above provides us with a novel method of 

detecting the abnormality of urban mobility patterns, as well as a better understanding 

of the “pulse” of a particular city. 

5 Conclusion 

This research focused on investigating the dynamic mobility patterns of urban areas. 

We demonstrated that DTW is a highly effective method for exploring the similarity / 

dissimilarity of urban mobility patterns. The results indicate that the study area has 

the highest mobility density around 9am and 6pm, and this pattern exists for both 

weekdays and weekends. We also looked into the internal structures of the abnormal 

series. In addition, we provided a method to examine the similarity between a 

benchmark series and study areas based on the DTW distance matrix. The outlier 

detection method discussed in Section 4.2 can also be used to identify abnormal 

mobility patterns in future urban studies, as well as providing reference for 

transportation and urban planning.  

This research provides us with new insights for modeling the changing mobility 

patterns for urban areas. Here we used Voronoi polygons to divide the study area, in 

future studies we will use grid cells (500m*500m) and compare both results. 

Moreover, in this paper the data is segmented into 1 hour granularity. It would be 

interesting to investigate how different temporal granularities impact the results. Age 

and gender factors of phone users should also be included in further studies. Another 

potential direction for future research is to investigate how the predefined local and 

global constraints affect the DTW distance and classification results. The 



methodology discussed in this paper can be applied to other cities. Moreover, DTW 

can also be used to examine individual mobility patterns of phone users (i.e., 

characterizing user trajectories based on the abnormality of visited areas). 
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